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Abstract 6 

Reliable estimation of hydrological soil moisture state is of critical importance in operational 7 

hydrology to improve the flood prediction and hydrological cycle description. Although there 8 

have been a number of soil moisture products, they cannot be directly used in hydrological 9 

modelling. This paper attempts for the first time to build a soil moisture product directly 10 

applicable to hydrology using multiple data sources retrieved from SAC-SMA (soil moisture), 11 

MODIS (land surface temperature), and SMOS (multi-angle brightness temperatures in H-V 12 

polarisations). The simple yet effective Local Linear Regression model is applied for the data 13 

fusion purpose in the Pontiac catchment. Four schemes according to temporal availabilities of 14 

the data sources are developed, which are pre-assessed and best selected by using the well-15 

proven feature selection algorithm Gamma Test. The hydrological accuracy of the produced 16 

soil moisture data is evaluated against the Xinanjiang hydrological model’s soil moisture 17 

deficit simulation. The result shows that a superior performance is obtained from the scheme 18 

with the data inputs from all sources (NSE = 0.912, r = 0.960, RMSE = 0.007 m). Additionally 19 

the final daily-available hydrological soil moisture product significantly increases the Nash-20 

Sutcliffe efficiency by almost 50 % in comparison with the two most popular soil moisture 21 
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products. The proposed method could be easily applied to other catchments and fields with 22 

high confidence. The misconception between the hydrological soil moisture state variable and 23 

the real-world soil moisture content, and the potential to build a global routine hydrological 24 

soil moisture product are discussed.  25 

Keywords: Hydrological soil moisture state (SMD); Local Linear Regression (LLR); Gamma 26 

Test (GT); Soil Moisture and Ocean Salinity (SMOS) multi-angle brightness temperatures; 27 

North American Land Data Assimilation System 2 (NLDAS-2); Moderate Resolution Imaging 28 

Spectroradiometre (MODIS) land surface temperature 29 

1. Introduction 30 

Soil moisture is a key element in the hydrological cycle, regulating evapotranspiration, 31 

precipitation infiltration and overland flow (Wanders et al., 2014). For hydrological 32 

applications, the antecedent wetness condition of a catchment is among the most significant 33 

factors for accurate flow generation processes (Berthet et al., 2009; Matgen et al., 2012a). 34 

(Norbiato et al., 2008) reported that initial wetness conditions are essential for efficient flash 35 

flood alerts. Additionally an operational system requires reliable hydrological soil moisture 36 

state updates to reduce the time drift problem (Aubert et al., 2003; Berg and Mulroy, 2006; 37 

Dumedah and Coulibaly, 2013). However, currently there is no available soil moisture product 38 

that can be used directly in hydrology modelling, primarily because soil moisture is difficult to 39 

define and there is no single shared meaning in various disciplines (Romano, 2014).  40 

Although there have been many soil moisture measuring projects (e.g., satellite missions such 41 

as Advanced Scatterometer (ASCAT), Soil Moisture and Ocean Salinity (SMOS), and Soil 42 
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Moisture Active Passive (SMAP); ground-based networks such as Soil Climate Analysis 43 

Network (SCAN), U.S. Surface Climate Observing Reference Networks (USCRN), and 44 

COsmic-ray Soil Moisture Observing System (COSMOS)), they are not sufficiently used in 45 

hydrology due to the following reasons: 1) misconception between the hydrological soil 46 

moisture state variable and the real-field soil moisture content (Zhuo and Han, 2016a); 2) 47 

unawareness of data availability and strength/weakness of different data sources; 3) the existing 48 

soil moisture products are mainly evaluated against point-based ground soil moisture 49 

observations or airborne retrievals which have significant spatial mismatch (both horizontally 50 

and vertically) to catchment-scales, and are therefore less applicable to hydrological modelling 51 

(Pierdicca et al., 2013); 4) underutilisation of multiple data sources (e.g., multi-angle raw 52 

observations by satellite sensors).  53 

Some studies have attempted to directly utilise the existing soil moisture products (i.e., data 54 

from satellites, land surface models, and in-situ methods directly) for flood prediction 55 

improvement, for example (Brocca et al., 2010) explored that utilising the soil water index 56 

from ASCAT sensor could improve runoff prediction mainly if the initial catchment wetness 57 

conditions were unknown; (Aubert et al., 2003) assimilated in-situ soil moisture observations 58 

into a simple rainfall-runoff model and acquired better flow prediction performance ; (Javelle 59 

et al., 2010) suggested that estimations of antecedent soil moisture conditions were useful in 60 

improving flash flood forecasts at ungauged catchments; contrarily (Chen et al., 2011)’s study 61 

showed assimilating ground-based soil moisture observations was generally unsuccessful in 62 

enhancing flow prediction; and (Matgen et al., 2012b) revealed that satellite soil moisture 63 

products added little or no extra value for hydrological modelling. Clearly those results are 64 
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rather mixed. Challenges remain in integrating soil moisture estimated outside the hydrological 65 

field into hydrological models. We believe if a hydrologically directly applicable soil moisture 66 

product could be produced, the aforementioned studies’ results would be significantly 67 

improved.  68 

Therefore the aims of this paper are to clarify the aforementioned misconception between the 69 

hydrological model’s soil moisture state and the real-world soil moisture, assess the data 70 

availabilities for direct hydrological soil moisture state estimation, and fuse those available 71 

data sources using a hydrologically relevant approach. It is hoped that the final product has a 72 

superior hydrological compatibility over the existing soil moisture products. To achieve these 73 

aims, the Xinanjiang (XAJ) (Zhao, 1992b) operational rainfall-runoff model is used as a target 74 

to simulate flow and soil moisture state information (i.e., soil moisture deficit (SMD)) for the 75 

Pontiac catchment in the central United States (U.S.). XAJ is the first hydrological model 76 

adopting the multi-bucket variable-size method in its modelling concept which has been 77 

followed by many famous operational hydrological models (Beven, 2012), so it is 78 

representative for those similar models. For the purpose of hydrological soil moisture state 79 

estimation, it is effective to adopt the data driven method, which can map multiple data sources 80 

into the desired dataset without computational burden. Various data fusion techniques have 81 

been developed (Prakash et al., 2012; Srivastava et al., 2013; Wagner et al., 2012), however 82 

their methods require high computational time to run and this, in a real-time flood forecasting 83 

framework, could not match the operational needs. Comparatively Local Linear Regression 84 

(LLR) model is a simpler method and requires relatively low computational time. Therefore it 85 

is chosen in order to test if a simple method is able to provide effective performance. The 86 
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multiple data sources applied in this study include the SMOS (Kerr et al., 2010b) multi-angle 87 

brightness temperatures (Tbs) with both horizontal (H) and vertical (V) polarisations, the 88 

Moderate Resolution Imaging Spectroradiometre (MODIS) (Wan, 2008) land surface 89 

temperature, and the soil moisture product by SAC-SMA (Xia et al., 2014). The main reason 90 

for choosing those three data sources is due to their Near-Real-Time (NRT) availabilities 91 

(MODAPS Services, 2015; Rodell, 2016) (SMOS becomes available in NRT recently (ESA 92 

Earth Online, 2016)), which allows fast implementation in flood forecasting. The detail 93 

explanations of those datasets are covered in the methodology section. A well-proven feature 94 

selection algorithm Gamma Test (GT) (Stefánsson et al., 1997; Zhuo et al., 2016b) is employed 95 

to pre-assess the selected data inputs and find the optimal combination of them for soil moisture 96 

state calculation. In addition, an M-test (Remesan et al., 2008) is adopted to explore the best 97 

size of the training data. The desired soil moisture product is trained and tested by the XAJ 98 

SMD simulation. In total four data-input schemes are developed according to the temporal 99 

availability of the selected data inputs, which are then combined to give a daily hydrological 100 

soil moisture product. Compared with previous work, our study contains the following new 101 

elements: i) a hydrologically directly usable soil moisture product is proposed; ii) the GT and 102 

LLR techniques are used for the first time in a data fusion of multiple data sources for 103 

hydrological soil moisture state estimation; iii) the use of multiple data sources is useful, which 104 

allows data users to analyse the availability of the different products and compare the relative 105 

benefits of them.  106 

2. Material and Methods 107 
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2.1 Study Area 108 

In this study, the Pontiac catchment (1,500 km2, Figure 1) is used for the calibration and the 109 

validation of the XAJ model. Pontiac (40.878°N, 88.636°W) lies on the north-flowing 110 

Vermilion River, which is a tributary of the Illinois River of the state of Illinois, U.S. The worst 111 

flood in this area occurred on December 4, 1982, cresting at 5.84 m above mean sea level 112 

(MSL); and the most recent flood occurred on January 9, 2008, cresting at 5.75 m MSL, so this 113 

catchment is likely located within a winter-flooding region. Pontiac is covered with moderate 114 

canopy (the annual mean Normalized Difference Vegetation Index retrieved from the MODIS 115 

satellite is around 0.4), when compared with a densely vegetated catchment, it has more 116 

accurate soil moisture estimations from satellites (Al-Bitar et al., 2012). Based on the Köppen-117 

Geiger climate classification, this medium sized catchment is dominated mainly by hot summer 118 

continental climate (Peel et al., 2007).With reference to the University of Maryland Department 119 

Global Land Cover Classification, it is used primarily for agriculture purpose (Bartholomé and 120 

Belward, 2005; Hansen, 1998). The soil mostly consists of Mollisols, which has deep and high 121 

organic matter, and the nutrient-enriched surface soil is typically between 60-80 cm in depth 122 

(Webb et al., 2000). The study period is from January 2010 to December 2011. The reason for 123 

using this two-year period of data is due to the discontinuity of the flow records in this 124 

catchment, and the selected period provides the most complete flow observations. 125 

The North American Land Data Assimilation System 2 (NLDAS-2) (Mitchell et al., 2004) 126 

provides precipitation and potential evapotranspiration information to run the XAJ model. Both 127 

data forces are at 0.125o spatial resolution and have been converted to daily temporal resolution. 128 
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In order to use those distributed forcing into the lumped XAJ model, both forcing have been 129 

interpolated with the area-weighted average method instead of the more complicated Kriging 130 

approach, because the latter could produce errors if not well controlled (Wanders et al., 2014). 131 

The average annual rainfall depth is about 954 mm, and the average annual potential 132 

evapotranspiration is approximately 1670 mm. It is worth noting that the actual 133 

evapotranspiration is much less than the potential amount, because dryer soil reduces the actual 134 

evapotranspiration, and if the soil is totally dry the actual evapotranspiration will be zero 135 

regardless how large the potential evapotranspiration is. The daily observed flow data are 136 

acquired from the U.S. Geological Survey. 137 

2.2 Hydrological Model 138 

The XAJ hydrological model is used for the simulation of SMD and river flow at a daily time 139 

step. It is a simple lumped rainfall-runoff model with many applications performed in world-140 

wide catchments (Chen et al., 2013; Gan et al., 1997; Shi et al., 2011; Zhao, 1992b; Zhao and 141 

Liu, 1995; Zhuo et al., 2016a; Zhuo et al., 2015b). Since XAJ can obtain rather effective flow 142 

modelling performances and require only two meteorological forcing (precipitation and 143 

potential evapotranspiration) inputs (Peng et al., 2002), it is used more widely than the more 144 

complicated semi-distributed/ fully-distributed hydrological models for operational 145 

applications.  146 

As shown in Figure 2, the XAJ model has three main components: evapotranspiration, runoff 147 

generation, and runoff routing. XAJ consists of soil layers (upper, lower and deep) in its 148 

evapotranspiration calculations. Because XAJ adopts the multi-bucket variable-size method in 149 
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its modelling concept, it has unfixed soil depths which is more effective than the fixed depths 150 

models (Beven, 2012). Other widely used models such as PDM (Moore, 2007), VIC (Liang et 151 

al., 1994), and ARNO (Todini, 1996) also follow this concept.  152 

In XAJ, the three-layer soil moisture state variables are all calculated as SMD, which is an 153 

important soil wetness variable in hydrology. SMD is defined as the amount of water to be 154 

added to a soil profile to bring it to the field capacity (Calder et al., 1983; Rushton et al., 2006). 155 

In this study, only the surface SMD referring to the vegetation and the very thin topsoil, is 156 

utilised as a hydrological soil moisture target. This is because the water held in the top few 157 

centimetres of the soil has been widely recognised as a key variable associated with water 158 

fluxes (Eltahir, 1998; Entekhabi and Rodriguez-Iturbe, 1994). Moreover the current satellite 159 

technology is only capable of acquiring the Earth information from the outermost layer of the 160 

soil. Therefore as a case study based on the XAJ model, we only focus on the surface soil 161 

moisture state investigation here. Future research will focus on the root-zone soil moisture 162 

product development by using a similar method proposed in this study.  163 

In this study, a modified version of the XAJ model is adopted, and interested readers are 164 

referred to (Zhuo and Han, 2016b) for more details. All the XAJ’s 16 parameters are used 165 

during the model calibration, which are shown in Table 1. In this study, the genetic algorithm 166 

(Wang, 1991) is used for parameter optimisation. Based on the genetic algorithm result, minor 167 

trial and error adjustments to the parameters EX, B, WUM, WLM and WDM are also carried out 168 

to obtain the best model performance (Chen and Adams, 2006). The calibration and the 169 

validation results (during January 2010-April 2011 and May 2011 to December 2011, 170 
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respectively) of the XAJ model are shown in Figure 3. Discussion regarding the river flow and 171 

SMD simulation results in this catchment have been published in (Zhuo and Han, 2016b), with 172 

Nash-Sutcliffe Efficiency (NSE) obtained larger than 0.80 during both the calibration and 173 

validation periods. The results are not repeated here.   174 

2.3 Multiple Data Sources for Hydrological Soil Moisture State Estimation 175 

Data sources from SMOS, MODIS and SAC-SMA are used (Table 2). All data sources have 176 

been converted into catchment-scale datasets by the area-weighted average method. The detail 177 

description of each data source is given as follows.  178 

2.3.1 SMOS Multi-angle Brightness Temperatures (SMOS-Tbs) 179 

The SMOS (1.4 GHz, L-band) Level-3 Tbs data covering the studying period are available from 180 

the Centre Aval de Traitement des Données SMOS (CATDS) (Jacquette et al., 2010). The 181 

reason for choosing the SMOS satellite is because compare with other satellite techniques (i.e., 182 

optical, and thermal infrared), microwave bands (especially with longer wavelength such as L-183 

band (21 cm)) can penetrate deeper into the soil (~ 5 cm) and have less interruptions from 184 

weather conditions (Njoku and Kong, 1977). Additionally SMOS has a relatively longer period 185 

of data record compares with other satellite missions such as SMAP. SMOS retrieves the 186 

thermal emission from the Earth in both H and V polarisations with a wide ranges of incidence 187 

angles from 0o to 60 o. The observation depth of SMOS is approximately 5 cm with a spatial 188 

resolution of 35-50 km depending on the incident angle and the deviation from the satellite 189 

ground track (Kerr et al., 2012; Kerr et al., 2010a; 2001).  190 
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SMOS provides Tbs retrievals at all incidence angles averaged in 5o -width angle bins, which 191 

have been transformed into the ground polarisation reference frame (i.e., H, and V 192 

polarisations). Therefore the number of the SMOS-Tbs inputs for the hydrological soil moisture 193 

estimation can be as high as 24 (12 angle bins per polarisation), with the centre of the first 194 

angle bin at 2.5o in both polarisations (Rodriguez-Fernandez et al., 2014). As satellite 195 

progresses, any given location on the Earth’s surface is scanned a number of times at various 196 

incidence angles, depending on the location with respect to the satellite subtrack: the further 197 

away, the fewer the angular acquisitions (Kerr et al., 2010b). The data availabilities of the 198 

SMOS-Tbs are illustrated in Figure 4 (the availabilities for H and V polarisations are the same). 199 

It can be seen that the data availabilities among various incidence angles are rather different. 200 

In this study the only angle range that gives the most available record of data is from 27.5o to 201 

57.5o (i.e., 7 for H and 7 for V polarisation), which is therefore chosen for the hydrological soil 202 

moisture development. This angle range is in line with the angle selection in (Rodriguez-203 

Fernandez et al., 2014). In addition the SMOS Level-3 soil moisture product from the CATDS 204 

(SMOS-SM) is also acquired for a comparison with the estimated soil moisture product. 205 

Retrievals that are potentially contaminated with Radio Frequency Interference have been 206 

removed. Readers are referred to (Kerr et al., 2012) for a full description of the SMOS 207 

retrieving algorithms, and (Njoku and Entekhabi, 1996) for a good knowledge of how passive 208 

microwave relates to soil moisture variations.  209 

2.3.2 MODIS Land Surface Temperature (MODIS-LST) 210 
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The MODIS/Terra (Earth Observing System AM-1 platform) (Wan, 2008) daily MOD11C1-211 

V5 land surface temperature covering the studying period is downloaded from the Land 212 

Processes Distributed Active Archive Centre website. MODIS is chosen among other 213 

operational optical satellites for its suitable features, mostly, due to its frequent revisiting time 214 

and free NRT data availability. It measures 36 spectral bands between 0.405 and 14.385 μm, 215 

and acquires data at three spatial resolutions 250 m, 500 m, and 1,000 m respectively while the 216 

adopted MOD11C1 V5 product incorporates 0.05o (5.6 km) spatial resolution. The benefit of 217 

adding land surface temperature information is that previous studies have shown the variations 218 

in soil moisture have a strong linkage with land surface temperature (Carlson, 2007; Goward 219 

et al., 2002; Mallick et al., 2009). One reason is the changes of land surface temperature are 220 

mainly affected by albedo and diurnal heat capacity, and the diurnal heat capacity is mainly 221 

controlled by soil moisture (Price, 1980). (Wan, 2008) compared MOD11C1-V5 land surface 222 

temperatures in 47 clear-sky cases with in situ measurement and revealed that the accuracy was 223 

better than 1 K in the range from −10° to 58 °C in about 39 cases. Cloud-contaminated data 224 

have been removed by a double-screening method, and its detail can be found in (Wan et al., 225 

2002).  226 

2.3.3 SAC-SMA Soil Moisture Estimation (SAC-SMA-SM) 227 

The reason for choosing the SAC-SMA land surface modelled soil moisture product is because 228 

satellite can often have missing data due to various weather and canopy conditions (e.g., rainfall, 229 

frozen weather, and vegetation coverage), so this daily dataset is essential in producing a 230 

temporally completed hydrological soil moisture product. In this study, the surface soil 231 
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moisture (0-10 cm) simulated from the SAC-SMA model is selected. This is because its 232 

estimated soil moisture gives a high accuracy against the observational soil moisture and a 233 

good correlation with the XAJ SMD (Zhuo et al., 2015b). The daily SAC-SMA-SM is given 234 

in a spatial resolution of 0.125o. The dataset can be download from 235 

(http://www.emc.ncep.noaa.gov/mmb/nldas/ ). Readers are referred to (Xia et al., 2012) for a 236 

full description of the SAC-SMA data products. 237 

2.3.4 Data Availabilities 238 

As shown in Table 2, the availability of the three data sources is rather different. Unlike SMOS 239 

and MODIS, SAC-SMA-2 SM is a model based product which runs in a NRT mode, so it 240 

produces valid data every day during the whole studying period. Whereas the two satellites’ 241 

data are more exiguous depends on weather and surface conditions. Compared with MODIS, 242 

the SMOS’s retrieval is even sparse and the biggest data shortage normally occurs in the winter 243 

season where its returned microwave signal is mostly affected by frozen soils (Zhuo et al., 244 

2015a). Based on the data availability analysis, the proposed hydrological soil moisture product 245 

is built from four data-input schemes as presented in Table 3. Those four schemes enable us to 246 

test and compare the estimated soil moisture state more comprehensively. Since the continuity 247 

of a soil moisture product is essential for any operational applications, SAC-SMA-SM is 248 

included in all of the schemes.  249 

2.4 Data Fusion  250 

2.4.1 Gamma Test (GT) for Feature Selection 251 
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Before model building, it is important to carry out a feature selection process, because it can 252 

simplify the model inputs, shorter training times, and reduce overfitting problems. In this study 253 

a proper combination of the incidence angles from the SMOS Tbs is vital for the best soil 254 

moisture state calculation. For this purpose, a feature selection method called GT is adopted. It 255 

has been effectively used in numerous studies for model inputs selection (Durrant, 2001; Jaafar 256 

and Han, 2011; Noori et al., 2011; Remesan et al., 2008; Tsui et al., 2002; Zhuo et al., 2016b). 257 

In addition to the feature selection, GT can also give useful indication about the underlying 258 

model complexity. It is a near-neighbour data analysis routine which determines the minimum 259 

mean-squared error (MSE) that can be achieved based on the input-output dataset utilising any 260 

continuous nonlinear models (Zhuo et al., 2016b). The calculated minimum MSE is referred as 261 

the Gamma statistics and denoted as Γ. For detailed calculations about the GT algorithm, 262 

interested readers are referred to (Koncar, 1997; Pi and Peterson, 1994; Stefánsson et al., 1997). 263 

Here only the basic knowledge about the GT is shown: 264 

{  ii yx , , Mi 1 }                (1) 265 

here the inputs 
m

i Rx  are vectors restricted by a closed bounded set mRC , and their 266 

corresponding outputs Ryi   are scalars. The outputs y are determined by the input vectors 267 

x that carry predictively useful messages. The only assumption made is that their latent 268 

relationship is from the following function: 269 

rxxfy m  )( 1                 (2) 270 

here f is built up as a smooth model with r representing random noise. Without loss of generality, 271 

the assumption of r noise distribution is that its mean is always zero, because all the constant 272 
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bias has been considered within the f model. Additionally r’s variance ( )(rVar ) is restricted 273 

within a set boundary. The observations’ potential model is now defined within the class of 274 

smooth functions.  275 

The Γ is related to  kiN , , which represents as the kth ( pk 1 ) nearest neighbours of each 276 

vector xi ( Mi 1 ), written as )1(],[ pkx kiN  , where p is a fixed integer. In order to 277 

determine the Gamma function from the input vectors, the Delta function is used: 278 

2

1

],[

1
)( 




M

i

ikiNM xx
M

k               ( pk 1 )        (3) 279 

here the function ikiN xx ],[  calculates the Euclidean distance. The Gamma function for its 280 

output values is expressed as in Eq. 4, and the Γ can be determined from Eq. 3 and 4: 281 

2

1

],[
2

1
)( 




M

i

ikiNM yy
M

k             ( pk 1 )        (4) 282 

here ],[ kiNy is the corresponding output values for the kth nearest neighbours xi ( ],[ kiNx ). To 283 

find Γ a least-squared regression line for the p points ( )(kM , )(kM ) is built using the 284 

following equation: 285 

  A                   (5)  286 

where Γ can be determined when δ is set as zero. The detailed explanation is: 287 

)()( rVarkM  , when 0)( kM              (6) 288 

Eq. 5 gives us valuable information about the underlying system: not only that the Γ is a useful 289 

indicator of the optimal MSE result that any smooth functions can achieve, but its gradient A 290 

also provides guidance about the underlying model complexity (i.e., the steeper the gradient 291 
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the more sophisticated the model should be adopted). In this study, the winGammaTM software 292 

is used for GT calculation (Durrant, 2001). The mathematical feasibility of GT has been 293 

published in (Evans and Jones, 2002).  294 

2.4.2 M-test for Training Data Size Selection 295 

A common practice in nonlinear modelling is to split the dataset into training and testing parts. 296 

However there is no universal solution on how to divide the datasets (i.e., the proportion of 297 

each part) so that the best modelling results could be obtained. Here, an M-test is carried out, 298 

where M stands for the training data size. M-test is accomplished by calculating the Γ for 299 

increasing the M value (i.e., expanding the training data) and exploring the resultant graph to 300 

judge whether the Γ approaches a stable asymptote. Such an approach is straightforward and 301 

effective in finding the optimal sizes of training and testing datasets, while avoiding overfitting 302 

problems and reducing unsystematic attempts.  303 

2.4.3 Local Linear Regression (LLR) 304 

LLR is a nonparametric regression model that has been applied in (Liu et al., 2011; Pinson et 305 

al., 2008; Sun et al., 2003; Zhuo et al., 2016b) for forecasting and smoothing purposes. LLR 306 

builds local linear regression based on the nearest points (pmax) of a targeted point, and repeats 307 

such a process over the whole training dataset to produce a piecewise linear model. There are 308 

many methodologies in selecting the pmax, in this study a method called influence statistics is 309 

used (Durrant, 2001; Remesan et al., 2008), which is outlined as below. 310 

Assume there are pmax nearest points, then the Eq. 7 can be built: 311 
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yXm                     (7) 312 

here X is a dp max  matrix which shows the d dimensional information of pmax, xi are the 313 

nearest points confined between 1 and pmax, y is the output vector with pmax dimension, and m 314 

is a set of parameters formed in a vector, which plays an important role in mapping the solution 315 

from X to y. Therefore Eq. 7 can be expanded as 316 































































maxmaxmaxmaxmax

2

1

2

1

321

2232221

1131211

pddpppp

d

d

y

y

y

m

m

m

xxxx

xxxx

xxxx











         (8) 317 

In order to solve the equation, the following two conditions are set: a) if X is square and non-318 

singular then Eq. (7) can be simply calculated as yXm 1 ; b) if X is not square or singular, 319 

Eq. (7) needs to be rearranged and m can be get by finding the minimum of: 320 

2
yXm                    (9) 321 

with the distinct solution of:  322 

yXm #                   (10) 323 

where X# is the pseudo-inverse matrix of X (Penrose, 1955; Penrose, 1956). 324 

3. Results 325 

In this section, different combinations of input data (Table 3) are adopted to examine their 326 

impacts on hydrological soil moisture estimation. XAJ SMD is used as a hydrological soil 327 

moisture state benchmark for the training and testing. More discussion about the misconception 328 

between the hydrological model’s soil moisture state variable and the real-world soil moisture 329 
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content is covered in Section 4. During GT and M-test processes, all data inputs need to be 330 

normalised so that their mean is zero and standard deviation is 0.5. This step is necessary in 331 

reducing the impacts of numerical difference from various inputs, hence improves the GT 332 

efficiency (Remesan et al., 2008). Five statistical indicators are used for the soil moisture 333 

estimation analysis: Pearson product moment correlation coefficient (r), MSE which is the 334 

same value as the Gamma statistic Γ, Standard error (SE), NSE (Nash and Sutcliffe, 1970), and 335 

Root Mean Square Error (RMSE).  336 

3.1 Scheme 1: SMD Estimation Using SAC-SMA-SM as input 337 

Although in this scheme, there is no need for data feature selection because only one data input 338 

is involved, the GT is still carried out to explore the useful information about the underlying 339 

relationship between the XAJ SMD and the SAC-SMA-SM. The calculated Gamma statistics 340 

are shown in Table 4. The Γ of 0.072 indicates that the optimal MSE achievable using any 341 

modelling technique is 0.072; and the small value of SE means the precision and accuracy of 342 

the GT result. Γ is a significant target value in the M-test to find the most suitable training data 343 

size. As presented in Figure 5a, when more training data (i.e., M increases in steps of one) is 344 

used the Γ changes dramatically. Eventually at M = 292, Γ starts to stabilise around 0.072. The 345 

M-test allows us to confidently apply the first 292 datasets to build a model of a given quality, 346 

in the sense of predicting with a MSE around the asymptotic level. The corresponding Gamma 347 

gradient (A) suggests the complexity of the underlying system: the larger the A value is the 348 

more complex the system is. For example if A is significantly large, a more complicated model 349 

like a Support Vector Machine might be required, but A = 1.353 in Scheme 1 is small (Remesan 350 
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et al., 2008), therefore a LLR model should be able to simulate the system. For LLR modelling, 351 

its complexity level is controlled by the pmax parameter. As illustrated in Figure 6, pmax is 352 

identified from a trial and error method. The procedure is by increasing the LLR pmax value 353 

from 2 to 100 to analyse the variations of their corresponding Γ results. It can be seen from 354 

Figure 6 that the smallest Γ is achieved at pmax = 4, which is therefore adopted for the LLR 355 

modelling. The training and testing scatter plots for the LLR modelling are shown in Figure 7a. 356 

It is observed that there are some points lying far above the bisector line during the training 357 

period signifies higher estimations whereas some points sit far below the bisector line during 358 

the testing period indicates under-estimation of the SMD. For the testing results, when XAJ 359 

simulated soil moistures state have already reach the total dryness (i.e., XAJ SMD peaks at 360 

around 0.080 m) the predicted soil moisture state is still in the drying progress. Figure 8a plots 361 

the time series of the estimated and the targeted SMD. The plot shows that the estimated SMD 362 

follows the seasonal trend of the soil moisture fluctuations well, so it is wetter during the winter 363 

season and exsiccated during the hot summer season. However it is clear to see that the model 364 

is not able to capture the extreme situations very well, especially during the wet season when 365 

the XAJ SMD becomes smaller (e.g., between Day 300 and Day 350).  366 

3.2 Scheme 2: SMD Estimation Using SAC-SMA-SM and MODIS-LST as inputs 367 

Land surface temperature is the product of the soil temperature multiplied by the emissivity, 368 

and the emissivity depends on the dielectric constant of the soil and soil moisture (Rodriguez-369 

Fernandez et al., 2015). Therefore the additional MODIS-LST information could potentially 370 

improve the soil moisture estimation. The modelling process is the same as in Scheme 1. In 371 
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Table 4, it is clear to observe that by adding the MODIS-LST input, the Γ is improved to 0.060 372 

and its corresponding gradient A is reduced significantly to less than half of the Scheme 1’s. 373 

Meanwhile the SE value is decreased remarkably as well showing the accuracy of the GT. The 374 

M-test in Figure 5b shows the graph settles to an asymptote around 0.060 which is consistent 375 

with the calculated Γ result. Training data size of 199 is chosen here because it gives the lowest 376 

Γ value. For the LLR modelling, the best pmax value is found to be 2 from the trial and error 377 

result in Figure 6. The LLR training and testing performances are presented in Figure 7b. 378 

Although the problem of underestimation of extremely dry soil still exists (i.e., the points 379 

concentrate at the right end of the training and testing plots), overall the model’s prediction 380 

ability during both phases are better than Scheme 1’s (i.e., data points are closer to the 45o line). 381 

The improvement can also be seen clearly in the time series plot in Figure 8b. For example, the 382 

big disparities between the estimated and the targeted SMDs around DAY 300 and DAY 350 383 

are reduced evidently.   384 

3.3 Scheme 3: SMD Estimation Using SAC-SMA-SM and SMOS-Tbs as inputs 385 

The multi-angle Tbs retrievals are the main data inputs for SMOS soil moisture calculation, 386 

therefore their inclusion should also add a positive effect to the hydrological soil moisture 387 

estimation. As aforementioned, an efficient feature selection of the SMOS incidence angles is 388 

important for the best SMD calculation. In this study all the possible combinations from all 389 

inputs variables are examined with the Γ result as the statistical indicator. This method is 390 

capable of examining every combination (16383 embeddings in this case) of data inputs to 391 

target the optimal combination that gives the smallest absolute Γ value. As discussed in Section 392 
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2.3.4, SAC-SMA-SM is a compulsory data input, so it is not included in the selecting process. 393 

The best set of SMOS-Tbs to retrieve soil moisture state is composed of H polarisation at the 394 

incidence angles of 27.5o-47.5o, 57.5o, and V polarisation at the incidence angles of 27.5o-42.5o, 395 

52.5o, 57.5o. This result demonstrates that using a combination of H and V Tbs gives a better 396 

soil moisture estimation, which is logically sensible because different polarisations carry 397 

distinct information of the Earth surface. However some incidence angles could held common 398 

features which when putting together could result in a negative effect to the LLR modelling, 399 

and are therefore not included. The detailed investigation of the possible common features is 400 

out of the scope of this paper which is mainly due to the SMOS working mechanism.  401 

As seen from Table 4, the inclusion of SMOS-Tbs significantly improves the Γ result by 54%, 402 

while the gradient A is reduced greatly by 89% as compared with Scheme 1. The small A value 403 

illustrates that the underlying system is more straightforward and easier to model than the 404 

Scheme 1’s. The M-test analysis in Figure 5c produces an asymptotic convergence from 120 405 

training data size of Γ value around 0.033. It is interesting to see that the proportion of the 406 

required training data is relatively larger than those in Scheme 1 and 2. The potential reason 407 

could be explained by the larger amount of data inputs in this scheme. For LLR modelling, the 408 

pmax that gives the smallest Γ is 7 (Figure 6). The SMD estimations during the training and the 409 

testing are presented in Figure 9a. It can be seen that the SMD prediction ability of this scheme 410 

is remarkably better than the previous ones, as most of the points lie on the bisector line albeit 411 

there are still some under- and over- estimations. The reason SMOS outperforms MODIS in 412 

SMD estimation could be due to the long wavelength microwave has, so it presents the top few 413 

centimetres of the soil while MODIS LST (thermal infrared) only provides information at the 414 
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soil surface. The used LLR algorithm has been double checked to filter out the potential of 415 

overfitting problem. The checking processes are performed by muddling the SMD target in the 416 

testing datasets as well as altering the input file, and its efficiency stays the same. Hence it is 417 

believed that the LLR model is very useful in calculating SMD from this scheme. Generally 418 

the NSE, r and RMSE statistical indicators show a high agreement during both training and 419 

testing phases. For the time series plot in Figure 8c, it is clear to see that most of the estimated 420 

points lie closely to the benchmark line. The observed outliers could be partly due to the data 421 

shortage in this scheme, so that not all the scenarios are covered in the datasets.   422 

3.4 Scheme 4: SMD Estimation Using SAC-SMA-SM, MODIS-LST, and SMOS-Tbs as 423 

inputs 424 

In this scheme, all the three data sources are used to test if the modelling performance can be 425 

further improved. Here the full embedding calculation is again carried out to explore the most 426 

suitable incidence angles from the SMOS-Tbs. This is because the added MODIS-LST data 427 

could carry identical (i.e., redundant) features with some of the SMOS-Tbs datasets. As a result 428 

of the full embedding calculation, the best set of SMOS-Tbs is composed of H polarisation at 429 

the incidence angles of 37.5o-57.5o, and V polarisation at the incidence angles of 37.5o-42.5o, 430 

57.5o. As seen in Figure 5d, the total amount of data is significanly reduced due to the shortage 431 

of simultanuously available days between the MODIS and the SMOS observations. 432 

Interestingly the M-test graph vibrates more significantly than the other three schemes, which 433 

could be due to the smaller data size and the larger amount of data inputs in this scheme. Here 434 

the training data size is chosen as 62 with Γ obtained at around 0.030. The optimal pmax is 435 
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identified to be 5 (Figure 6). The LLR modelling results are shown in Figure 8d and Figure 9b. 436 

It is obvious that this scheme further improves the accuracy of the SMD estimation, especially 437 

with the high statistical performances achieved during both training and testing phases. 438 

Comparatively this scheme is more stable for SMD estimation, albeit it requires more data 439 

inputs and is only realisable when both the MODIS and the SMOS observations are available.     440 

3.5 Produce an Unintermitted Soil Moisture Product 441 

The data availability of the four schemes varies. As shown in Figure 10, Scheme 1 which has 442 

the poorest soil moisture state estimation gives the most data availability, while Scheme 4 443 

which has the most accurate soil moisture state estimation owns the least data availability. In 444 

order to produce an unintermitted hydrological soil moisture product, the four schemes need to 445 

be combined together to complement each other. The combining method is by selecting the 446 

best available soil moisture estimation. For example if all the schemes have available data at 447 

the same time, the best scheme’s soil moisture data is chosen (i.e., scheme 4 in this situation); 448 

whereas if just one scheme has data on that day, only that scheme’s soil moisture data is used. 449 

The performances of the four schemes as well as the combined product are summarised in 450 

Table 5. Although the combined soil moisture state is obtained with lower statistical 451 

performances than Scheme 3’s and 4’s, it is still hydrologically very accurate especially when 452 

comparing with the SMOS’s official soil moisture product (Table 5). The time series of the 453 

combined soil moisture state is plotted in Figure 11. It can be seen that the general trend of the 454 

produced soil moisture state follows the targeted data very well. However it tends to 455 

overestimate some of the wet events during the rainy season and significantly underestimate 456 
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the dryer soil condition in September 2011. Those poor estimations are mostly from the Scheme 457 

1 and 2 where Schemes 3 and 4 are not available. Since more and more microwave satellite 458 

observations are becoming obtainable, those new data sources could add extra benefits into the 459 

proposed model, and the accuracy of the soil moisture product is expected to be further 460 

enhanced.  461 

4. Discussion  462 

- What is a soil moisture state variable? 463 

This study uses the XAJ’s SMD simulation as a target because it is hydrological model directly 464 

produced. However it is argued that models with different parameters values can generate 465 

equally good flow results named as the equifinality effect, because they are all calibrated based 466 

on the observed flow. For this reason, their soil moisture state variables can be distinct among 467 

each other.  468 

In order to investigate this effect in more details, the XAJ model is manipulated by increasing 469 

one of its parameters WUM by 30 %. By doing so, the XAJ’s flow simulation remains as 470 

effective as its original form (the same NSE values), but its soil moisture state changes 471 

significantly from its original values. For a better visualisation, an enlarged plot of the SMD 472 

simulations between Day 222 and Day 344 is presented. As seen from Figure 12a although the 473 

soil moisture state variables from two equally good calibrations have a wide range of value 474 

differences (NSE = 0.34), they both follow the same pattern: when it rains they become wet by 475 

the similar amount; when there is a dry period they all move into a dryer state in a similar rate 476 
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to the actual evapotranspiration. Therefore they appear as in parallel movements and the latter 477 

plot (Figure 12b) shows a very strong linear correlation (r = 1.0) between them.  478 

Although the absolute values of the models’ soil moisture state variables are not quite 479 

meaningful and comparable, their variations are the true reflection of the soil moisture 480 

fluctuations in the real-world. This clarification is a very important concept, because there has 481 

been a wide spread of misunderstanding about the hydrological model’s soil moisture state and 482 

its connection with the real-world soil moisture.  483 

- Soil moisture state normalisation 484 

One deficiency of this study is that the generated soil moisture state is based on a hydrological 485 

model’s SMD simulation, so it is model parameter dependent. It is desirable to produce a soil 486 

moisture indicator which is independent from model parameters and dimensionless with 487 

variables between 0 and 1. Normalised Hydrological Soil Moisture State (NHSMS) indicators 488 

are produced as presented in Figure 13 (corresponding to the SMD simulations shown in Figure 489 

12). The normalisation method is by adopting the following equation: 490 

)min()max(

)min(

SMDSMD

SMDSMD
NHSMS




            (11)  491 

Such an approach is very effective as demonstrated by the almost identical SMD curves 492 

between the two XAJ simulations. In the future it is planned to use the same process on other 493 

hydrological models to test if the normalised soil moisture indicators are not only model 494 

parameter independent but also model structure independent. Since all hydrological models are 495 

driven by the same hydrological inputs (precipitation, evapotranspiration and flow), their 496 
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normalised soil moisture indicators should respond in a similar way (soil becomes wetter when 497 

it rains and drier when there is no rain). If this is true a new soil moisture product based on 498 

NHSMS could be generated as a routine product by the operational organisations such as 499 

NASA and ESA. Such a soil moisture product will also be very useful to the meteorological 500 

and hydro-meteorological fields in their land surface modelling because the current land 501 

surface models suffer from poor performance in their runoff estimations. As aforementioned, 502 

all current soil moisture products such as those from ESA and NASA are not optimised for 503 

different application fields. Our study gives an example of simulating the soil moisture data 504 

targeted to serve the hydrological community. It is possible other products serving farmers in 505 

agriculture, ecologists in the environment, and geotechnical engineers in construction could be 506 

produced using the proposed method.  507 

- Application of the produced soil moisture data 508 

Another area needs further work is the hydrological application of the produced data. Generally 509 

effective hydrological application of soil moisture data needs three pre-conditions: 1) a good 510 

soil moisture data relevant to hydrology; 2) a hydrological model compatible with such data; 511 

3) an effective data assimilation scheme. This paper tackles the first point, and the other two 512 

points would need further research because there are significant knowledge gaps in them. If all 513 

the three points are solved, such a data has a huge potential in operational hydrological 514 

modelling. For example, initialisation of the model could be shortened which reduces the need 515 

for model warm up. This is important during real-time flood forecasting when there is not 516 

enough data to warm up the model for an imminent flood event. Such a warm-up period could 517 
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be very long, as demonstrated by the study in (Ceola et al., 2015). In addition the XAJ SMD 518 

data used here is based on the calibration of the observed rainfall and flow, so that the targeted 519 

SMD is interpolated between observations and there is a minimum time-drift. In the real-time 520 

flood forecasting the errors in precipitation and evapotranspiration could accumulate which 521 

cause time-drift problems. Therefore a soil moisture product such as the one produced in this 522 

study (i.e., based on minimal time-drift SMD) could help avoiding such a problem. The 523 

proposed soil moisture data is also valuable for the validation of land surface models, especially 524 

useful for their runoff simulations. Due to the limit of time and resources this study has not 525 

tackled all the issues, but has laid a good foundation for their future researches.  526 

5. Conclusions 527 

A hydrological soil moisture product is produced for the Pontiac catchment using the GT and 528 

the LLR modelling techniques based on four data-input schemes. Three data sources are 529 

considered including the soil moisture product from the SAC-SMA model, the land surface 530 

temperature retrieved by the MODIS satellite, and the multi-angle brightness temperatures 531 

acquired from the SMOS satellite. The four data-input schemes are built from the four 532 

combinations of the data sources. The generated soil moisture product (unintermitted with no 533 

missing data) for a period of two years (2010-2011) is compared with the XAJ hydrological 534 

model’s SMD simulation to test its hydrological accuracy. It is concluded that the GT and the 535 

LLR modelling techniques together with the chosen data inputs can be used with high 536 

confidence to estimate an unintermitted hydrological soil moisture product, and the proposed 537 

method could be easily applied to other catchments and fields. 538 
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In this study it has been found that different data sources have their own unique information 539 

contents, so that they can complement each other using data fusion technique. Their synergy 540 

can be best achieved to produce an enhanced soil moisture product. In data fusion an important 541 

principle is MRmr (Maximum Relevance minimum redundancy). The soil moisture state in 542 

this study is generated from a large number of data inputs, and their selection is carried out by 543 

the GT which is one of the methods in MRmr. This is the first time that the GT is used in a data 544 

fusion of satellite multiple Tbs scans, land surface temperature and external soil moisture 545 

information for producing a hydrological soil moisture product. Future studies should explore 546 

other MRmr methods in addition to GT, to compare if they are more effective input selection 547 

methods. As to the data fusion regression model, LLR is chosen in this study because it is easily 548 

applied and very effective. However it is possible there may exist other better models. We 549 

encourage the community to apply the proposed methodology using other regression models. 550 
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Table 1. The XAJ model parameters used in the Pontiac catchment.  

Symbol Model parameters Unit Range 

K Ratio of evapotranspiration [-] 0.10-1.20 

WUM The areal mean field capacity of the upper layer mm 30-50 

WLM The areal mean field capacity of the lower layer mm 20-150 

WDM The areal mean field capacity of the deep layer mm 30-400 

IMP Percentage of impervious and saturated areas in the catchment % 0.00-0.10 

B Exponential parameter with a single parabolic curve, which represents the non-

uniformity of the spatial distribution of the soil moisture storage capacity over the 

catchment 

 

[-] 

 

0.10-0.90 

C Coefficient of the deep layer that depends on the proportion of the catchment area 

covered by vegetation with deep roots 

 

[-] 

 

0.10-0.70 

SM Areal mean free water capacity, which represents the maximum possible deficit of free 

water storage 

 

mm 

 

10-50 

KG Outflow coefficient of the free water storage to groundwater relationships [-] 0.10-0.70 

KSS Outflow coefficient of the free water storage to interflow relationships [-] 0.10-0.70 

EX Exponent of the free water capacity curve [-] 1.10-2.00 

KKG Recession constant of the groundwater storage [-] 0.01-0.99 

KKSS Recession constant of the lower interflow storage [-] 0.01-0.99 

CS Recession constant in the lag and route method for routing through the channel system 

with each sub-catchment 

 

[-] 

 

0.10-0.70 

L Lag in time [-] 0.00-6.00 

V Parameter of the Muskingum method m/s 0.40-1.20 

dX Parameter of the Muskingum method [-] 0.00-0.40 
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Table 2. General data-input properties relevant for this study. 

 SMOS-Tbs MODIS-LST SAC-SMA-SM 

Product brightness 

temperature  

land surface 

temperature 

soil moisture 

Unit Kelvin (K) Kelvin (K) m3/m3 

Near-Real-Time (NRT) Yes  Yes Yes 

Spatial resolution (km) 35-50 5.6 14 

Data time-step ~ every three days ~ daily Daily 

Data availability for the 

studying period (days) 

217 458 730 
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Table 3. Four data-input schemes: scheme 1: SAC-SMA-SM; scheme 2: SAC-SMA-SM and 

MODIS-LST; scheme 3: SAC-SMA-SM and SMOS-Tbs; scheme 4: SAC-SMA-SM, MODIS-

LST, and SMOS-Tbs. 

 SAC-SMA-SM MODIS-LST SMOS-Tbs 

Scheme 1 x   

Scheme 2 x x  

Scheme 3 x  x 

Scheme 4 x x x 
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Table 4. Model statistical performances and modelling information, where Γ is the calculated 

gamma statistic which is the minimum MSE that can be achieved from a modelling method; A 

is the Gamma gradient; SE is the Standard error; pmax is the nearest points for LLR modelling; 

M is the training data size; and SMOS IA is the chosen incidence angles of SMOS-Tbs.   

 Γ  A SE pmax M SMOS IA 

Scheme 1 0.072 1.353 0.004 4 292 - 

Scheme 2 0.060 0.568 0.002 2 199 - 

Scheme 3 0.033 0.152 0.004 7 120 H: 27.5o-47.5o, 57.5o 

V: 27.5o-42.5o, 52.5o, 57.5o 

Scheme 4 0.029 0.119 0.006 5 62 H: 37.5o-57.5o 

V: 37.5o-42.5o, 57.5o 
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Table 5. Summary of SMD estimation performances. It is noted that RMSE is in the unit of 

metre.   

 Training  Testing 

 NSE r RMSE  NSE r RMSE 

Scheme 1 0.752 0.870 0.011  0.688 0.830 0.014 

Scheme 2 0.767 0.877 0.011  0.747 0.865 0.012 

Scheme 3 0.928 0.965 0.006  0.876 0.940 0.008 

Scheme 4 0.912 0.957 0.007  0.912 0.960 0.007 

Combined - - -  0.790 0.889 0.011 

SMOS-SM - - -  0.420 0.650 0.017 
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Figure. 1. The location and river network of the Pontiac catchment in the U.S., with 

the flow gauge and NLDAS-2 central grid points (Zhuo et al., 2015a). 
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Figure. 2. Adopted flowchart of the XAJ model (Zhao, 1992a). The model consists of 

an evapotranspiration component (a), a runoff generating component (b), and a runoff 

routing component (c). P, PET, and ET are the precipitation, potential 

evapotranspiration, and the simulated actual evapotranspiration respectively; WU, WL 

and WD represent the upper, lower, and deep soil layers’ areal mean tension water 

storage respectively; WM is the areal mean field capacity; EU, EL, and ED stand for 

the upper, lower, and deep soil layers’ evapotranspiration output respectively; S is the 

areal mean free water storage; a is the portion of the sub-catchment producing runoff; 

IMP is the factor of impervious area in a catchment; RB is the direct runoff produced 

from the small portion of impervious area; R is the total runoff generated from the 

model with surface runoff (RS), interflow (RI), and groundwater runoff (RG) 

components respectively. These three runoff components are then transferred into QS, 

QI, and QG and combined as the total sub-catchment inflow (T) to the channel network. 

The flow outputs Q from each sub-catchment are then routed to the catchment outlet to 

produce the final flow result (TQ). The rest of the symbols are explained in Table 1. 
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Figure. 3. Time series of daily rainfall and daily flow (observation and XAJ simulated) 

for the Pontiac catchment, during a) calibration and b) validation (Zhuo et al., 2015a).
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Figure 4. SMOS-Tbs data availabilities. It is noted that the available dates for the horizontal and the vertical 

polarisations are the same, so only one is shown here. 
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Figure 5. M-test, to find the best training data size: a) Scheme 1; b) Scheme 2; c) Scheme 3; and d) Scheme 

4.  
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Figure 6. Gamma statistic (Γ) variations for increasing the LLR pmax value.
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Figure 7. LLR modelling during the training and testing phases for a) Schemes 1 and b) Scheme 2. 
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Figure 8．The time series plots of the XAJ SMD and the estimated SMD from the four schemes: a) Scheme 

1; b) Scheme 2; c) Scheme 3; and d) Scheme 4.
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Figure 9．LLR modelling during the training and testing phases for a) Schemes 3 and b) Scheme 4. 
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Figure 10. Data availability plots of the four schemes: Scheme 1: SAC-SMA-SM input; 

Scheme 2: SAC-SMA-SM and MODIS-LST inputs; Scheme 3: SAC-SMA-SM and SMOS-

Tbs inputs; Scheme 4: SAC-SMA-SM, MODIS-LST, and SMOS- Tbs inputs. The total 

available days for the four schemes are 730, 458, 217, and 140 respectively. 
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Figure 11. Time series plot of the combined daily hydrological soil moisture state estimations.

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-478, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 14 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



54 
 

 

Figure 12. SMD variations from the manipulated XAJ calibration (i.e., the WUM 

parameter is increased by 30 %) and its original calibration.  
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Figure 13．Normalised SMD variations from the manipulated XAJ calibration (i.e., 

the WUM parameter is increased by 30 %) and its original calibration.  
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